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Abstract. Because the harmonics of toroidal Alfvén wave eigenmodes have a different response
to mass density at different points along a magnetic field line, the frequencies of these harmonics
can, in principal, be used to infer the distribution of mass density along the field line. Here we
present several improvements to the methodology and test our method using magnetic and plasma
wave data from the CRRES spacecraft. Our method includes the calculation of toroidal frequencies
in a Tsyganenko magnetic field assuming a polynomial expansion for the logarithm of the mass
density with respect to a coordinate related to distance along the field line. We use a Monte Carlo
distribution of frequencies about the observed peaks in order to infer an uncertainty for the mass
density. The method only works well if the frequencies of the fundamental and second harmonic
are known. We compare the inferred mass density at the spacecraft location with the electron
density determined from the plasma wave experiment onboard CRRES. The observed electron
density is about a factor of 2 lower than the mean of the inferred mass density for an ensemble of
frequency combinations based on the uncertainties of the measured spectral peaks but is close to or
within the error bars of the inferred mass density. In one of the cases examined, the inferred mass
density had a local maximum at the equator, while in the other case the inferred mass density
increased monotonically away from the equator.

1. Introduction

While the average properties of the equatorial plasma density in
the magnetosphere have been at least approximately described
[Carpenter and Anderson, 1992; Gallagher et al., 2000], the
latitudinal density dependence along field lines is less well known.
Methods used to infer the latitudinal density dependence include in
situ spacecraft observations and remote sensing with whistler
waves and ultra low frequency toroidal alfvén frequencies [see
Goldstein et al., 2001, and references therein].
Magnetospheric magnetic field lines often undergo toroidal

(azimuthal) Alfvén wave oscillations. Because the field lines are
tied down (fixed) at the ionospheric boundary, only certain discrete
frequencies are allowed; these depend on the particular harmonic,
just like waves on a string. Because of the different parallel
structures associated with the harmonics, the harmonic frequencies
respond differently to the mass density at various locations along
the field line. For instance, since the velocity perturbation of the
second harmonic has a node at the equator, the frequency of the
second harmonic is unaffected by a narrow peak in mass density at
the equator. Because of the different response of harmonics to the
mass density distribution, information about the mass density along
the field line can be determined from the frequencies of the toroidal
Alfvén waves [Troitskaya and Gul’elmi, 1967].

Most techniques to determine the dependence of mass density r
along field lines have assumed a power law form

r ¼ req
LRE

R

� ��

; ð1Þ

where req is the equatorial mass density, L is defined to be the
equatorial radius in units of the Earth’s radius RE, and R is the
radial distance from the center of the Earth (see references byMenk
et al. [1999] and Denton and Gallagher [2000]). Assuming the
power law form, Cummings et al. [1969] calculated toroidal
eigenfrequencies at geosynchronous orbit (L = 6.6). Takahashi and
McPherron [1982], Engebretson et al. [1986], and Menk et al.
[1999] matched ratios of these frequencies to observed frequencies
to infer values of req and values of a varying from 0–6.
Themethod ofPrice et al. [1999] ismore general in that it does not

assume any particular functional dependence for the mass density.
They used a finite difference approximation of the toroidal wave
equation to infer the mass density at several locations along L= 1.8
and 2.8 magnetic field lines. As they implemented it, the method is
only applicable within about L = 3 [Price et al., 1999]; the main
reason for this is that their finite difference scheme cannot accurately
represent the variation in Alfvén speed due to a large variation of R/
(LRE). By using higher-order differentiation, the method of Price et
al. [1999] can be extended to arbitrarily large L [Denton, 2000].
In this paper, we use a Tsyganenko magnetic field model

[Tsyganenko, 1989, 1995] as an input to the wave equation [see
also Waters et al., 1996; Loto’aniu et al., 1999] and express the
mass density in terms of a polynomial expansion in the coordinate
z. (This coordinate is defined in (2); in a dipole field and in the
vicinity of the equator it is proportional to the distance along a field
line.) The polynomial expansion yields a somewhat more general
functional dependence than the power law and seems to be able to
converge better on a solution than when interpolation is used on the
basis of values of r at fixed values of z (see section 4 ). By varying
the frequencies of the observed harmonics about their peak values,
we determine the uncertainty of the mass density. In section 2 we
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describe the data we will use from the Combined Release and
Radiation Effects Satellite (CRRES). In section 3 we discuss our
method, and in section 4 we present our results. Using magnetic
field data from the CRRES spacecraft, we infer the mass density at
the spacecraft location and compare this with the electron density
determined from the CRRES Plasma Wave Experiment (PWE) (the
electron density can be inferred from the upper hybrid frequency
noise band) [Anderson et al., 1992].
There have been a number of comparisons between mass

densities inferred from toroidal frequencies observed by ground
magnetometers and the results of density models [Denton and
Gallagher, 2000, and references therein]. There have been at
least a couple of comparisons to electron density values inferred
from whistler waves observed on the ground. Webb et al. [1977]
found quite similar density values at L � 4 for ion density
inferred from toroidal waves (using a WKB approximation for
the frequencies and assuming that all ions are protons) and
electron density inferred from whistler waves. Chi et al. [2000c]
found similar temporal behavior for inferred ion and electron
density.
There have also been comparisons of the mass density inferred

from toroidal frequencies measured by ground magnetometers to
the density measured by spacecraft. Waters et al. [1996] com-
pared inferred mass density from toroidal frequencies measured
with the Canadian Auroral Network for the Open Program
Unified Study (CANOPUS) magnetometer array to �1–100 eV
ion densities measured by the Los Alamos geosynchronous
satellite 1989-046, 4.8 hours west of CANOPUS. For one data
segment the agreement was fairly good (with appropriate time
shift of the data), though a precise comparison cannot be made
because of the rapid time dependence coupled with the difference
in local time for the two measurements (and possibly radial
position as well). For a second data segment the density values
from CANOPUS were at least 10 times the density detected by
1989-046. The authors appealed to heavy ions to explain the
larger mass density. Chi et al. [2000b] also compared equatorial
mass densities inferred from toroidal frequencies measured by the
CANOPUS array with ion densities inferred from Los Alamos
geosynchronous satellite data and found that the densities meas-
ured by the spacecraft instrument were 10–50% of the values
inferred from the ground data. The time period they studied was
during a storm, so a heavy ion contribution to mass density was
likely. Finally, Loto’aniu et al. [1999] have compared mass
densities inferred from CANOPUS data with plasma wave data
from the CRRES spacecraft. They found excellent agreement at
some times, though at other times the two densities varied by a
factor of 2 or more.
In this paper we make a similar comparison between inferred

mass density and electron density, but in our case we have the
advantage that the magnetic fluctuations and electron density are
measured at the same location. Thus our results represent an
excellent test of whether we understand the values of toroidal
frequencies that are observed. After making this comparison
(section 4), we discuss the size of our errors in section 5 and
summarize our results in section 6.

2. CRRES Data

In order to apply our methods we must measure the frequencies
of several toroidal harmonics. However, these frequencies are more
sensitive to the amplitude of the magnetic field B than they are to r,
since, in general, the frequencies should depend on the Alfvén
speed. (In the WKB approximation, the frequencies will be n/(

R
dl/VA), where n is the harmonic number and dl is the differential
length along the field line.) Therefore we choose a section of the
CRRES orbit near its apogee for which the magnetic field is
relatively constant. We take the magnetic field data for each orbit
and do a running average of B, 40 min around each data point.
We choose the data segment around the minimum of the averaged

B. For the most part, the data segments we will use in this paper
are for the section of data for which the running average varies
only 5% from its minimum. We apply a Welsh window to the
vector (unaveraged) magnetic field data for this data segment,
take a Fourier transform, and get the power spectrum. Finally, we
do a running average of the power spectrum over seven frequency
bins.
Initially, we selected data segments from four orbits for study.

However, we eliminated two of these because the power spectra
were not stationary over the entire data segment. (We may, in a
future study, be able to examine the power spectra on a shorter
timescale, as the lengths of the data segments we initially use are
longer than necessary for this study.) The dates and start and end
times of the two remaining data segments, for orbits 081 and 920,
are given in Table 1. The average SM coordinates for these two
data segments are also given in Table 1.
The power spectra of the local field-aligned X, Y, and Z

components of the magnetic field (with Z being the magnetic field
direction, Ŷ the direction of the radial vector crossed with Z, and
X = Ŷ � Z) are given for orbits 081 and 920 in Figures 1 and 2,
respectively. In Figure 1 the toroidal harmonics (Y component,
indicated by the thick solid curve) are readily apparent. Our
identifications of the harmonic number (n = 1 for the fundamental,
2 for the second harmonic, etc.) are indicated over the lines. (The
index n is the number of nodes of the azimuthal magnetic
fluctuation between the ionospheres.) The toroidal wave energy
dominates that of the other components (except for the second
harmonic at �7 mHz, for which the poloidal power is only slightly
less), so the power in these harmonics should be uncontaminated

Table 1. Data for CRRES Orbits 081 and 920

Orbit

Item 081 920

Date Aug. 28, 1990 Aug. 10, 1991
UT Start 0615 0008
UT End 0755 0139
R, RE 6.21 6.46
MLAT, deg. 16.8 �7.4
MLT, hours 6.6 16.5
Dst, nT �22 �20
psw, nPa 1.0
By-sw, nT �1.3
Bz-sw, nT 5.3
Kp 1.7 1.4
B Field Modela T96 T89
L = Rmax/RE 7.1 6.6
zsc 0.36 0.14
Bsc,obs, nT 147. 107.
Bsc,Tsyg, nT 135. 114.
Beq,mod, nT 73.7 98.6
ne�sc,obs, cm

�3 13.8 ± 1.1 8.4 ± 0.9
f1, mHz 2.60 ± 0.4 3.8 ± 0.8
f2, mHz 7.34 ± 0.7 7.7 ± 0.5
f3, mHz 11.2 ± 1.0 12.2 ± 0.9
f4, mHz 15.3 ± 0.7 16.3 ± 0.8
f5, mHz 19.3 ± 0.7
req,S,

b amu cm�3 18.9 �� 1.6 17.5 �� 1.7
aS 1.1 ± 3.3 4.8 ± 2.0
c0

c 1.64 1.17
c2

c �3.37 3.29
c4

c 9.75 �0.61
rsc,pol,

b,d amu cm�3 20. �� 2.4 16. �� 1.9

aT89 (T96) refers to the 1989 (1996) Tsyganenko magnetic field model
[Tsyganenko, 1989, 1995].

bThe errors here are given as a multiplicative factor (multiplied or
divided rather than added or subtracted).

cThese values are for the peak frequencies.
dThese values are found for a distribution of frequencies about the peak

frequencies with an error indicated by the width of each peak.
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by the other components. Note that the amplitude of these
harmonics is very small; the amplitude of the fundamental at �2.6
mHz is only about a third of a nanotesla. Identifying which peak
corresponds to which toroidal harmonic is a nontrivial task; we will
comment more on our particular identifications later. The n-
dependent frequencies fn are listed in Table 1.
It is interesting to note that the poloidal power (characterized

by the X component) is nearly equal to the toroidal power at the
second harmonic of the toroidal mode. For the poloidal mode the
second harmonic is the harmonic most likely to be unstable [Cheng
and Lin, 1987; Chen and Hasegawa, 1988]. The spacing of the
higher-frequency poloidal harmonics (characterized by the X
component) is less than that of their toroidal counterparts. While
Cummings et al. [1969] found that the poloidal and toroidal
frequencies were nearly equal, their calculations were for zero
pressure. An inward pressure gradient can lead to reduced poloidal
frequency [Vetoulis and Chen, 1996]. However, the simplest theory
appears to lead to a greater reduction in frequency for the lower
harmonics [Vetoulis and Chen, 1996], whereas it appears from
Figure 1 that the higher harmonics may have a greater reduction in
frequency.
Figure 2 shows the power spectra of the magnetic field compo-

nents for CRRES orbit 920. In this case we are less sure about the
frequencies of the toroidal harmonics. Note that the second
harmonic is dominated by the power in the poloidal component.
Nevertheless, because of the distinct peaks in toroidal power we
will apply our method to this event, also.

3. Method

The wave equation for toroidal Alfvén frequencies in an
arbitrary magnetic field is given by Singer et al. [1981]. We will
use the Tsyganenko [1989, 1995] model [see also Waters et al.,
1996; Loto’aniu et al., 1999]. Given the two time intervals listed
in Table 1, we find the average values of Dst and Kp, the solar
wind pressure psw, and the interplanetary magnetic field (IMF)
components By-sw and Bz-sw as obtained from the National Space
Science Data Center’s (NSSDC) OMNIWeb system. These are
listed in Table 1 for CRRES orbit 081; solar wind data is not
available for CRRES orbit 920. We use the Tsyganenko 1996

magnetic field model for orbit 081 and the 1989 model for orbit
920 (since that model does not require the solar wind data)
[Tsyganenko, 1989; Tsyganenko, 1995]. Taking into account the
fact that we know the value of B at the spacecraft location Bsc,obs,
we adjust the magnetic field values from the Tsyganenko model
by multiplying by Bsc,obs/Bsc,Tsyg. In this way, we use only the
shape of the field line from the model; the magnitude is determined
from observation. The model value at the equator Beq,mod (listed in
Table 1) is calculated with this adjustment. The value of Bsc,obs/
Bsc,Tsyg is 1.09 for orbit 081 and 0.94 for orbit 920 as can be seen
from the magnetic field values listed in Table 1. Therefore the
difference between observed and Tsyganenko magnetic field val-
ues is not large, and that gives some confidence about our use of
the magnetic field model.
Using the wave equation of Singer et al. [1981], we can now

calculate the toroidal frequencies if we specify the mass density
along the field line. We define L as the maximum radius to any
point along the field line (from the model magnetic field) divided
by the Earth’s radius, L 	 Rmax/RE. For most of our calculations,
the mass density distribution will be determined as a function of
the coordinate z, defined as

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R

LRE

r
: ð2Þ

The use of the coordinate z is suggested by the fact that in dipole
coordinates, the wave equation [Singer et al., 1981] separates into
two terms (one with squared frequency and one with two spatial
derivatives) when this spatial coordinate is used [Radoski, 1966].
In dipole coordinates, z is equal to the sine of the latitude from the
equator, and at the equator it is proportional to the distance along
the field line from the equator. However, in this paper, we will not
limit ourselves to a dipole magnetic field; we consider z to be
merely a convenient function of R. We will also assume that the
mass density distribution is symmetric with respect to the equator
(R = Rmax = LRE).
Consider, first, this functional form for the mass density:

log10 r ¼ c0 þ c2z
2 þ c4z

4; ð3Þ
where r is given in amu cm�3. Given a guess for the coefficients ci,
we can solve for the theoretical eigenfrequencies using a shooting
code solution of the toroidal wave equation [Singer et al., 1981].

n = 1

2

3
4 5

Figure 1. Power spectra for the vector components of the
magnetic field for CRRES orbit 081. The vector component
directions are dipole meridian X (thin solid curve), Y (bold solid
curve), and Z (dashed curve).

n=1

2

3 4

Figure 2. Power spectra for the vector components of the
magnetic field for CRRES orbit 920 (same format as Figure 1).
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Then, using a nonlinear root solver, we adjust the values of ci until
the calculated frequencies (recalculated for each adjustment of the
ci values) match the observed frequencies. We use only three
frequencies at a time, and thus we have the possibility of solving
for the three unknowns, ci, from the three known frequencies. For a
valid solution, we require that the calculated frequency ratios agree
with the observed ratios to within 1%.
Though, in principle, one might be able to use any three

frequencies, our method is much more likely to converge on a
solution if one of the frequencies is the fundamental. Some
understanding of this can be obtained by examining Figure 3,
which plots ratios of the toroidal frequencies fn as a function of
c2 if c4 = 0. The ratio f2/f1 decreases monotonically with respect
to c2. So within the range of c2 plotted here, there is a unique
mapping from f2/f1 to c2. (Considering our logarithmic form, (3)
and the fact that z varies roughly from 0–1, c2 = 10 leads to a
variation in r of �10 orders of magnitude, so we probably do
not need to consider larger values of c2 than those shown in
Figure 3.) On the other hand, f3/f2 has a minimum at c2 = 3;
some values of f3/f2 are consistent with two values of c2, and
some values of f3/f2 are not consistent with any c2. Figure 3
indicates that we can safely calculate a value of c2 given the
frequencies of the fundamental and the second harmonic (assum-
ing c4 = 0). We have not proven that we can calculate c2 and c4
uniquely, given three frequencies. However, our experience is
that with three frequencies we can usually converge on a solution
if the three frequencies include the fundamental and the second
harmonic (n = 2). Furthermore, when we vary the initial guess

for the mass density using three frequencies, we converge on the
same solution.
In order to get a guess for the initial mass density distribution we

use the method of Schulz [1996] as implemented by Denton and
Gallagher [2000]. (For our purposes, Schulz [1996] implementa-
tion would have been adequate.) This yields values of req and a,
assuming the power law form in (1). Denton and Gallagher [2000]
showed that the most important feature of a in the power law form
is that it determines the second derivative of the density with
respect to distance along the field line or, equivalently, with respect
to z (at the equator, z is proportional to distance along the field
line). This is because the density in the vicinity of the equator
(where B, and thus VA, is small) has the greatest effect on the
toroidal frequency. Thus for our initial mass density guess we set c4
= 0 and choose c2 such that the second derivative of r with respect
to z is equal to that of the power law form with the values of req
and a inferred from Schulz’s [1996] method.
We use Singer et al.’s [1981] wave equation (9) (with a misprint

in their equation corrected),

@2

@s2
x0 þ @

@s
ðh2�BÞ

@

@s
x0 þ !2

V 2
A

x0 ¼ 0: ð4Þ

The wave function x0 is the linear displacement in the direction of
oscillation (we assumed this was the azimuthal direction) divided
by ha. The outputs of the magnetic field model which go into the
solution of (4) are the distance along the field line s, the
magnitude of the magnetic field B, and the displacement to an
adjacent equilibrium field line ha in the direction of oscillation. In
addition, the radius R is used to relate the coordinate z to a point
along the field line (with coordinate s). We assumed a perfectly
conducting ionosphere at R = 1.15 RE, which means that the
quantity xa in Singer et al.’s equation (9) is equal to zero at that
radius. Using also the evaluation of r along the field line as a
function of s (power law form for r as determined from Schulz’s
[1996] method), the eigenvalues are found using the shooting
code method. Our code automatically searches up and down in
frequency to get the necessary harmonics. Given our initial guess
for c2 and c4 = 0, we use a globally convergent nonlinear root
solver [Press et al., 1997] to adjust c2 and c4 until the frequency
ratios f2/f1 and f3/f1 match the observed values. We then adjust c0
so that the theoretical frequencies match the observed frequencies
in magnitude.
In addition to solving for the distribution of mass density if

the frequencies of the harmonics are given by their peak values,
we also take into account the frequency uncertainties (listed in
Table 1; these are related to the half width of the peaks assuming a
Gaussian shape). We generate a Monte Carlo distribution of
frequencies such that the standard deviation of each harmonic
about its peak value is equal to the uncertainty determined from the
width of the spectral line. Then, at each value of z which is plotted,
we calculate the log average of r and the standard deviation of
log10r for this distribution of frequencies. (As described in section
2, we have done some averaging of the power spectra displayed in
Figures 1 and 2. With some fine-tuning of the method, we can
reduce the uncertainty of some of the frequencies somewhat, as we
show later.)

4. Results

Figure 4 shows the mass density r inferred by our method for the
orbit 081 data as a function of z (left panel) and R /RE (right panel).
Here the functional form (3) was used for the mass density, and the
frequencies f1, f2, and f3 were used (where the subscript indicates
the harmonic number). Concentrating first on the left panel, the
middle solid curve is our solution based on the peak frequencies.
The inferred values of c0, c2, and c4 assuming (3) are listed in Table
1. The top and bottom solid curves represent the log average values
plus and minus 1 standard deviation (in logarithm), respectively,

Figure 3. Ratios of the frequencies of toroidal harmonics, fn, as a
function of c2 for mass density given by (3) if c4 = 0.
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for an ensemble of frequencies based on the errors in frequency for
the spectral lines (as described in section 3). Using (3), our code
converges on a solution for �90% of the frequency combinations
(those combinations of frequencies for which there is no conver-
gence have extreme values of the frequency ratios f2/f1 and f3/f1).
Since Figure 4 is displayed with a log scale, the log average (not
shown) is halfway between the top and bottom solid curves and is
close to the solution based on the peak frequencies (middle solid
curve) for z less than �0.5. For z above �0.5 the uncertainty in the
result (spread between top and bottom solid curve) is very large;
the most that can be said with regard to the large z values is that the
mass density increases on average with respect to the ensemble of
sampled frequencies.
The three diamonds in Figure 4 are plotted at values of z (and R/

RE) such that they are equally spaced with respect to the Alfvén
time coordinate tA /

R
dl/VA}, where dl is the differential length

along the field line and the integral is evaluated from the equator.
The wave functions are more sinoidal with respect to this coor-
dinate than with respect to other coordinates (see Figure 5), as
shown by Denton [2000]. The quantity tA is normalized so that its
value is unity at the ionosphere, and the values of tA for the three
diamonds are 1/6, 3/6, and 5/6. We would not expect our solution
in Figure 4 to be accurate at values of z greater than that of the right
most diamond (for those values of z, variations in r will be
overshadowed by the large variation in B), and that intuition is
consistent with the large errors for z > 0.5.
In Figure 4 the dashed curve is the solution based on the method

of Schulz [1996] as implemented by Denton and Gallagher
[2000]. This method uses all five frequencies measured for orbit
081 but is based on the power law form for mass density (equation
(1)) and assumes a dipole magnetic field. While the solution based
on the polynomial expansion (equation (3)) yields a mass density
which first decreases and then increases with respect to z, the
solution based on the Schulz method is always increasing with

respect to z (because of the power law form assumed it must be
monotonic) but at a more moderate rate. This curve is also
somewhat lower than our solution based on the Tsyganenko field
(middle solid curve).
The observed electron density at the spacecraft location based on

the CRRES plasma wave data [Anderson et al., 1992] (ne-sc,obs in
Table 1) is indicated by an asterisk with error bars at the value of
z corresponding to the spacecraft location zsc. It is about a factor
of 2 lower than the inferred mass density from our method using
the peak frequencies (middle solid curve in Figure 4). Since the
asterisk lies between the top and bottom solid curves, the
observed electron density is within the uncertainty of our method,
even neglecting the fact that the mass density may be somewhat
higher than the electron density because of the possible presence
of heavy ions. However, for the data segment analyzed the
uncertainty of our method at the CRRES position (taking into
account the width of the spectral lines) is quite large, a factor of
7; our method gives rsc,pol = 20. �� 2.4 amu cm�3 (listed also in
Table 1), where �� indicates a multiplicative error (to be
multiplied or divided; this arises from the logarithmic aver-
age). The right panel in Figure 4 shows that our method only
gives useful information about the mass density at large
values of R.
One of the interesting features of Figure 1 is that the power in the

second harmonic (n=2) is much lower than that in the neighboring
frequencies. If we think of CRRES as an equatorial spacecraft, we
might expect that the power in the fundamental n = 1 would be the
lowest. However, at the time of the orbit 081 observations the
position of CRRES is significantly far from the equator with
magnetic latitude (MLAT) = 16.8� (Table 1). Figure 6 shows
that the CRRES position is close to a node of the second harmonic
(n = 2).
We now investigate the effect of assuming a different functional

form for the distribution of mass density along the field line. Here
we assume a polynomial expansion for the linear mass density

r ¼ d0 þ d2z
2 þ d4z

4: ð5Þ
Figure 7 shows the same three solid curves as were plotted in
Figure 4, except that r is now plotted with a linear scale. The
dashed curves show the solution using the same method as was
used for Figure 4, except that now r is expressed using (5). The
two solutions using the peak frequencies (middle solid and dashed
curves) are quite similar, as are the top solid and dashed curves

(amu/cm )3

Figure 4. Mass density (in amu cm�3) versus (left) z and (right)
R/RE based on the use of f1, f2, and f3 for orbit 081. The middle
solid curve shows our solution using the peak frequencies. The top
and bottom solid curves show the log average solution for r plus
and minus 1 standard deviation, respectively, for an ensemble of
frequencies chosen so that the standard deviation of each frequency
is equal to the uncertainty of the observed frequency. The dashed
curve is the solution based on the method of Schulz [1996] as
implemented by Denton and Gallagher [2000].

Figure 5. First three wave function solutions for e 	idEL/(whaB)
as a function of the Alfvén time coordinate tA.
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(mean plus 1 standard deviation). The bottom solid and dashed
curves (mean minus 1 standard deviation) exhibit a greater
difference. The bottom dashed curve has values of r which are
negative at large values of z, whereas the solution using (3) (bottom
solid curve) is constrained to positive values of r. (The wave
equation requires only r, not

ffiffiffi
r

p
, so we can find solutions with

negative r.) Seeing as the negative values are unphysical, we prefer
the logarithmic expansion (equation (3)).
We can also specify the mass density at several points along the

field line (in a manner analogous to the method of Price et al.

[1999]) and obtain the mass density at locations between the
specified values by interpolation. We find, in general, that this
method does not converge on a solution as readily as when the
polynomial expansion is used. However, when both methods
converge, the results are quite similar. See Appendix A for a fuller
discussion.
To produce the results which were plotted in Figure 4, we used

only the first three frequencies, f1, f2, and f3. However, we
identified five harmonics, and the frequencies of these are listed
in Table 1. Unfortunately, our polynomial expansion method
(using (3)) does not converge when using more than three
frequencies. However, we can choose a different set of three
frequencies. Figure 8 shows the results of our analysis using
(3), but with f1, f2, and f4 (bold dashed curve) and f1, f2, and f5
(thin dashed curve). In this case, there is not a great difference
between these results and those found using f1, f2, and f3 (solid
curves), except for large values of z for which the uncertainty in r
is great. The frequencies f1, f3, and f4 can also be used, but in that
case not all frequency combinations converge on a solution; see
Appendix B for a fuller description.
Now we consider the second set of data collected near the apogee

of CRRES orbit 920 (see Table 1). Figure 9 shows the results of our
analysis using the logarithmic polynomial expansion for r (3) and
the set of frequencies f1, f2, and f3. In this case, CRRES is closer to
the equator (MLAT = �7.4�). Again, our results using the peak
frequencies yield a mass density which is about a factor of 2 greater
than the observed electron density, and the electron density is within
the error bars found using an ensemble of frequencies based on their
uncertainties. Here the range of values indicated by the error bars at
the CRRES location is somewhat less than for orbit 081, about a
factor of 4 (rsc,pol = 16. � � 1.9).
The data for orbit 920 has one significant undesirable feature.

This is that the toroidal power in the lower frequency harmonics
(particularly for the second harmonic, n = 2) is less than the
poloidal power (see Figure 2; the difference in the power in the two

Y

Figure 6. Azimuthal component of the perturbed magnetic field
dBy divided by the background magnetic field B as a function of z
for the n = 1 (dashed curve), n = 2 (bold solid curve), and n = 3
(thin solid curve) eigenfunctions. The vertical dashed line is drawn
at the z value corresponding to the CRRES position, and a node of
the n = 2 eigenfunction is close to that position.

(amu/cm )3

Figure 7. The three solid curves, the diamonds, and the asterisk
with error bars showing the same information as was plotted in
Figure 4, except that r is now plotted with a linear scale. The
dashed curves are the corresponding solution using the linear
polynomial expansion for r (equation (5)).

(amu/cm )3

Figure 8. The solid curves, diamonds, and asterisk with error
bars showing the same data as was presented in Figure 4 for orbit
081 using f1, f2, and f3. The dashed curves show the corresponding
solutions for the peak frequencies (middle pair of bold and thin
dashed curves) and the log average plus or minus 1 standard
deviation (top and bottom pairs of bold and thin dashed curves)
using the same method, but with f1, f2, and f4 (bold dashed curves)
or f1, f2, and f5 (thin dashed curves).
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components is somewhat less if we do less averaging of the power
spectra with respect to frequency). In Appendix C we show results
using f1, f3, and f4. However, we again have the problem that the
method does not converge for all frequency combinations. It
appears that use of both the fundamental and second harmonic
frequencies is necessary to get convergence for most frequency
combinations.

5. Discussion of the Errors of the Frequencies

As was mentioned in the last paragraph of section 3, the
uncertainties in frequency for the spectra lines can be reduced if
a smaller time segment is used. In fact, for CRRES orbit 081
the uncertainties in frequency can be reduced by a factor of 2.
In Figure 10 we show results using the logarithmic polynomial
expansion with f1, f2, and f3 but based on the smaller uncer-
tainties resulting from using an hour-long segment of time.
Figure 10 indicates that there really is a local maximum in mass
density at the equator (the error bars in Figure 4 were so large
that a flat density distribution along the field line could not be
ruled out).
Unfortunately, the time segment cannot be reduced indefinitely,

because there is an inherent uncertainty in the measured fre-
quency equal to the inverse of the total amount of time. Thus,
ideally, one will reduce the time segment until the uncertainty in
frequency is minimized. The fact that we can reduce the uncer-
tainty by decreasing the time segment indicates that at least part
of the uncertainty in frequency is due to dependence with respect
to space (sampling different flux tubes) or time. On the other
hand, part of the uncertainty in frequency is likely to be due to
dissipation (Q factor), which will itself give a finite width to the
spectra lines. If all the spectral width were due to dissipation, it
might be reasonable to take the uncertainty in frequency as the
uncertainty of the peak frequency, rather than as the spectra
width. This would yield significantly lower uncertainties. Further
examination of how the uncertainties in frequency change with
respect to length of the time segment is desirable in order to try
to ascertain how much of the spectral width is due to space or
time dependence, and how much is due to dissipation. Even if the
spectral widths are entirely due to space or time dependence, one
might argue that the individual frequencies are correlated, leading

to a lower uncertainty (M. Engebretson, private communication,
2001).

6. Summary

Toroidal Alfvén frequencies can be used to infer the distribution
of mass density along magnetic field lines. Here we have devel-
oped the methodology and tested our method using data from the
CRRES spacecraft. This work is important for two reasons. First of
all, inferring mass density along field lines using toroidal Alfvén
frequencies is a promising technique to remotely sense the mag-
netosphere using ground-based data [Waters et al., 1996; Menk et
al., 1999; Loto’aniu et al., 1999; Chi et al., 2000a]. Secondly, the
toroidal Alfvén mode is one of the most fundamental waves in the
magnetosphere. It is important to see if we understand how to
calculate it correctly.
Our method only works well if both the fundamental and second

harmonic frequencies are measured. The functional form which
worked best in our code was a polynomial expansion of the
logarithm of the mass density with respect to the coordinate z
(equation (2) ; probably the method would work just as well using
the distance along the field line s).
Using magnetic field data, we were able to identify at least five

harmonics of the toroidal Alfvén wave in one case (orbit 081).
However, with our method we were only able to use three
frequencies at a time in the analysis. It would be advantageous
to use all the frequencies in order to get all the information that
we possibly can. One possible improvement of our method is to
drop the assumption that the derivative of the mass density with
respect to distance along the field line is zero at the magnetic
equator. Asymmetry in the magnetic field could possibly lead to
asymmetry in the mass density, and at this point it is unclear what
the effect would be on the mass density solution if symmetry
about the equator is assumed when the true solution is asym-
metric. Our equations assume a perfectly conducting ionosphere

(amu/cm )3

Figure 9. Same as Figure 4, except the input data is from CRRES
orbit 920 (see Table 1).

Figure 10. Same as Figure 4 but based on reduced uncertainties
for frequency which result from using a smaller time segment.
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at both boundaries. Southwood and Kivelson [2001] have recently
demonstrated that differing ionospheric conductivity at the two
ionospheres can result in asymmetry in the wave solutions; the
results of such asymmetry should also be investigated. Another
possible improvement of the interpolation method is to allow the
interpolation points to float to different positions as the code
converges on a solution.
If the uncertainties in frequency are large, the uncertainty in the

inferred mass density can also be quite large. We have outlined a
procedure to estimate the error in mass density using an ensemble
of frequency combinations based on the uncertainties of the
individual frequencies. In the case of the data analyzed in this
paper, the range of values for mass density at the spacecraft
position (within 1 standard deviation of the mean logarithmic
value) varied by a factor of 7 in one case (orbit 081) and by a
factor of 4 in the other (orbit 920). On the other hand, we showed
that these errors could be reduced if a shorter time segment was
used.
One interesting result of this paper is that in one case

(CRRES orbit 081), our results indicate that the mass density
has a local maximum at the equator. Some observations have
indicated that the density may be peaked at the equator
[Gallagher et al., 2000]. Such a situation could develop from
‘‘top-down’’ refilling from shock formation at the equator [Singh
and Horwitz, 1992], though the processes involved in refilling
have yet to be confirmed (D. Gallagher, private communication,
2001).
Clearly, frequencies must be measured as accurately as possible

in order to accurately infer mass density. We have limited ourselves
to the magnetic field data. Possibly, by combining electric and
magnetic field data, we can determine the frequencies with greater
accuracy. Using the electric field data would also help in the
identification of the harmonics (which is necessary before our
method can be applied). If we can justify the assumption that most
of the width of the spectral lines is due to dissipation (see
discussion in section 5), the errors in frequency might be less than
we have indicated.
In the case of both data segments studied here, the observed

electron density (based on the plasma wave data) is lower than
the mean mass density (the mean value based on an ensemble of
frequencies) by about a factor of 2 (though it is close to or
within the range of error). The mass density model of Gallagher
et al. [2000] (based in part upon the work of Craven et al.
[1997]) has the mass density �15% larger than the electron
density, not enough to explain a factor of 2 difference in the
densities. During storm times the ratio of mass density to
electron density would be expected to be higher, but Dst is
not particularly large for these events (about �20 as can be seen
from Table 1). It would be worthwhile to examine heavy ion
data gathered by the low-energy magnetospheric ion composi-
tion sensor instrument [Young et al., 1992] on the CRRES
spacecraft to get a better measurement of the mass density at
the spacecraft location. This would provide an even better test
of the method.

Appendix A: Linear Interpolation Method Applied
to CRRES Orbit 081

Figure A1 shows the results that we get for CRRES orbit 081 if
we specify the mass density at three points and interpolate to
positions between those points. The three positions which we
choose correspond to tA = 0, 1/3, and 2/3. The interpolation we use
is quadratic with respect to position s (with zero slope at s = 0)
between the two positions corresponding to tA = 0 and tA = 1/3,
and linear with respect to s between the positions corresponding
to tA = 1/3 and tA = 2/3. Beyond tA = 2/3, r is linearly
extrapolated with the same slope as was used for the region
between tA = 1/3 and tA = 2/3. The evaluation of the z and s
values (length along field line) corresponding to these tA values

is performed using the mass density based on the Schulz
[1996] method. Figure 5 shows the wave eigenfunctions versus
tA for our solution using the logarithmic polynomial expansion
(3) (middle curve in Figure 4). The value tA = 0 corresponds
to a node of the second harmonic (n = 2), tA = 1/3
corresponds to a position which is close to a node for the
third harmonic (n = 3), and tA = 2/3 corresponds to a position
where all the eigenfunctions are significantly nonzero. On the
basis of these facts we might expect our method to converge
on a solution. However, there are many combinations of
frequencies within the error bars of the spectral lines for which
our code does not converge on a solution (see also Price et al.
[1999] for whom some frequency combinations did not yield a
solution). (This situation might be improved somewhat if we
reevaluated the mapping from z and s to tA for each set of
frequencies; we have based the mapping on the peak frequen-
cies only.)
Figure A2 shows the combinations of frequency ratios, f2/f1 and

f3/f1 for which our method using interpolation converges (dia-
monds) and for which it does not converge (dots). The vertical
and horizontal lines indicate the frequency ratios for the peak
values of the spectral lines. Note that the total distribution of
frequencies (diamonds and dots) is elongated toward the top right
and bottom left; this is due to the fact that changes in f1 have the
same effect on f2/f1 and f3/f1. Figure A2 shows that our inter-
polation method is more likely to converge, in this case, for
smaller values of f2/f1.
In Figure A1 the diamonds with error bars indicate the

solution at the three positions corresponding to tA = 0, 1/3,
and 2/3 using the interpolation method. The bold solid curves
represent the interpolated values of the mean plus or minus 1
standard deviation, while the top and bottom thin solid curves
and asterisks with error bars are the data as were plotted in
Figure 4 (resulting from our solution with the logarithmic
polynomial expansion (3)). On the basis of these curves the
interpolation method appears to lead to a more constrained value

(amu/cm )3

Figure A1. Solution for r for orbit 081 using interpolation
between r values specified at three positions corresponding to tA =
0, 1/3, and 2/3. The diamonds with error bars indicate the solution
at these positions. The bold solid curves represent the interpolated
values of the mean plus and minus 1 standard deviation. The
thin solid curves and asterisk with error bars are the same as
were plotted in Figure 4. The dashed curve is described in the
text.
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of r. For instance, the error bars for tA = 2/3 (at a z value close
to that of CRRES as indicated by the asterisk) are much smaller
than those resulting from the logarithmic polynomial expansion.
However, we must keep in mind that the frequency set is not
the same. If we rerun our code using the logarithmic polynomial
expansion but use only those combinations of frequency for
which the linear interpolation method converged, the resulting
values of r for log average mean plus and minus 1 standard
deviation are given by the dashed curves in Figure A1. These
dashed curves are very close to the corresponding bold curves
which result from a linear interpolation method. Therefore the
difference in the interpolation results and the logarithmic poly-
nomial expansion results are mainly due to the difference in
frequency set.
It is not too surprising that the interpolation method as we have

implemented it has trouble converging on a solution for some
frequency combinations. The interpolation method allows for local
minima and maxima of r, but these local minima and maxima must
occur at the locations of the interpolation points (tA=0, 1/3, and 2/3).
While another method (e.g., cubic spline interpolation) would
allow for local minima and maxima at different locations, our
experience is that such methods have even a lower percentage of
convergence.

Appendix B: Logarithmic Polynomial Expansion
Method Using f1, f3, and f4 Applied to CRRES
Orbit 081

The results shown in Figure B1 are based on the logarithmic
polynomial expansion for r (equation (3)), using f1, f3, and f4
(dashed curves). The results are similar to those using f1, f2, and
f3 (solid curves, equivalent to solid curves in Figure 4), but there
is a greater difference here than was evident in Figure 8.
However, the analysis using f1, f3, and f4 suffers from the same
problem that we had using the linear interpolation method
(leading to Figure A1 in Appendix A). When using f1, f3, and
f4, our code converges on a solution for only about two thirds of
the frequency combinations in the ensemble determined by the
uncertainties of the spectral peaks. Thus the results shown in

Figure B1 are not representative of the entire distribution of
frequencies.

Appendix C: Logarithmic Polynomial Expansion
Method Using f1, f3, and f4 Applied to CRRES
Orbit 920

The results shown in Figure C1 are for orbit 920 using the
logarithmic polynomial expansion for r (equation (3)). The three
solid curves, diamonds, and asterisks with error bars are the same
as were plotted in Figure 9, based on the analysis of f1, f2, and f3.
The dashed curves result from the same analysis but using f1, f3,

Figure A2. Values of f2/f1 versus f3/f1 for which our method
using interpolation converges (diamonds) and for which it does
not converge (dots). The vertical and horizontal lines indicate the
frequency ratios for the peak values of the spectral lines
(orbit 081).

(amu/cm )3

Figure B1. Same as Figure 8 except that there is only one set of
dashed curves which corresponds to the frequency set f1, f3, and f4.

(amu/cm )3

Figure C1. The three solid curves, diamonds, and asterisks with
error bars are the same as were plotted in Figure 9, based on the
analysis of f1, f2, and f3. The dashed curves result from the same
analysis but using f1, f3, and f4.
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and f4. The observed electron density ne-sc,obs is within the range of
the error bars for both runs; however, when f1, f2, and f3 are used,
ne-sc,obs is near the bottom of the range of r values, whereas when
f1, f3, and f4 are used, ne-sc,obs is near the top of the range. While our
code using f1, f2, and f3 converged for more than 90% of the
frequency combinations within the uncertainties of the spectral
lines, when f1, f3, and f4 were used, the code converged on a
solution for only �55% of the frequency combinations. Therefore
the results using f1, f2, and f3 (Figure 9) are more representative of
the entire distribution of frequencies.
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