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[1] The toroidal Alfvén wave, with magnetic field oscillations in the azimuthal direction,
exhibits a singularity in the vicinity of the toroidal resonant frequency (field line
resonance), so it is not surprising that this wave often exhibits varying frequency as a
function of L shell. It is less clear why the poloidal Alfvén wave, with magnetic field
oscillations in the radial direction, often exhibits a relatively constant frequency over a
range of L shells. So far, the most promising proposal to explain this phenomenon is the
theory of Vetoulis and Chen [1994, 1996], who showed that an energetically trapped
global poloidal mode can exist in a region where the poloidal Alfvén frequency is lower
than the toroidal frequency and where it exhibits a dip (minimum) with respect to L.
While this theory is mathematically plausible, it has never been shown that poloidal
Alfvén waves actually occur in association with such a dip in poloidal frequency. Here we
examine poloidal wave events observed by the AMPTE/IRM spacecraft and calculate the
theoretical poloidal frequency as a function of L using the equilibrium parameters
obtained from the spacecraft observations. We find that the poloidal Alfvén wave does
occur in association with such a dip (or at least a flattening) in poloidal frequency. While
Vetoulis and Chen hypothesized that such a dip would occur because of a sharp gradient
in plasma pressure, we find that the dip in poloidal frequency may result from the L
dependence of the equilibrium density or magnetic field. The observed frequencies are in
rough agreement with the theoretical frequencies, though in some cases we must assume
that the observed oscillations result from a high harmonic (third or fourth harmonic
structure along the magnetic field). We also apply the same analysis to compressional
wave events (with oscillations in the direction of the equilibrium magnetic field). Such
oscillations may be on the poloidal wave branch or the mirror mode branch. Here also, the
observed fluctuations occur in the region of a dip in poloidal frequency. In one case the
observed frequency is consistent with the theoretical poloidal frequency, whereas in
another case it is not. INDEX TERMS: 2752 Magnetospheric Physics: MHD waves and instabilities;

2730 Magnetospheric Physics: Magnetosphere—inner; 2740 Magnetospheric Physics: Magnetospheric

configuration and dynamics; 7871 Space Plasma Physics: Waves and instabilities; KEYWORDS: guided
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1. Introduction

[2] The magnetosphere often exhibits magnetic fluctua-
tions in the radial, azimuthal, or parallel (to the direction of
the background magnetic field B) direction. Depending on
which of these components is dominant, the wave is termed
the poloidal, toroidal, or compressional mode, respectively.

Here we are most interested in the poloidal and compres-
sional modes, particularly those which are internally driven
by kinetic instability of ring current ions in the dusk local
time sector [Anderson, 1993]. Poloidal and compressional
fluctuations may result from the fast/magnetosonic mode;
this mode is distinguished by density and pressure fluctua-
tions which are in phase with the magnetic fluctuations. In
contrast (in order that they not excite the fast/magnetosonic
mode), low-frequency instabilities such as Alfvén waves
must preserve pressure balance by having pressure and
magnetic fluctuations which are out of phase.
[3] At plasma b = 8pp/B2 small in comparison with unity

(where p is the equilibrium pressure), the likely driving
mechanism for poloidal fluctuations is the drift bounce
resonant instability, a resonant instability driven by the
hot ion pressure gradient and curvature [Southwood, 1976;
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Chen and Hasegawa, 1988, 1991; Chan, 1991]. At b of
order unity the waves may be driven by the drift bounce
resonant instability or by the drift mirror mode, which is
driven by temperature anisotropy [Cheng and Lin, 1987;
Chen and Hasegawa, 1991]. Actually, the two modes are
coupled, especially at high b. For both modes, the high-b
waves will have a large compressional component (along ^̂b).
These theories predict that the fundamental mode (no node
in azimuthal electric field) will be stable and that the most
unstable mode will have second harmonic structure along
the magnetic field (single node in azimuthal electric field at
the equator) [Cheng and Lin, 1987; Chen and Hasegawa,
1988, 1991; Cheng and Qian, 1994].
[4] The kinetic instabilities are generally most unstable

when the azimuthal wavelength is of the order of the proton
gyroradius. Since the driving population is expected to be
the ring current with energy �100 keV, the dominant
unstable waves have small azimuthal wavelength compared
with the radial distance to the wave region LRE, where RE is
the Earth radius. This leads to the growth of a wave with
large azimuthal mode number m = kfLRE � 100, where kf
is the azimuthal wave number. It is easy to see from r � DB
= 0 that the character of the Alfvén mode must change
depending on m; for small m, the Alfvén mode will be
dominantly toroidal, whereas for large m, it will be domi-
nantly poloidal.
[5] A remarkable feature of the internally driven (with out

of phase pressure and magnetic fluctuations) poloidal and
compressional waves is that they may be nearly monochro-
matic over a range of L shell [e.g., Takahashi et al., 1987].
In the inhomogeneous magnetosphere one would normally
expect that the wave frequency would decrease with respect
to L. In fact, this normally occurs for the continuum of
toroidal Alfvén waves that is observed in the magnetosphere
[Takahashi et al., 2002]. With such variation of frequency,
the natural tendency of the Alfvén wave is to break up via
phase mixing into more and more radial structure until the
radial wave vector kr > kf so that the wave is dominantly
toroidal [Ding et al., 1995; Mann and Wright, 1995].
[6] So what can then allow the poloidal mode to be quasi-

monochromatic over a range of L? Dissipative effects such
as ionospheric resistivity and/or ion gyroradius effects are
sometimes invoked to give a finite mode width, but there
will still be eigenmodes centered about each L shell, and
phase mixing of these finite width modes will still occur. If
the poloidal Alfvén frequency happens to be flat with
respect to L in some region of L, then the poloidal mode
could have a finite width there, though in that case the
energy would not be expected to be confined (L. Chen,
private communication, 2001). Probably the most promising
explanation for the global structure of the poloidal mode is
the theory of Vetoulis and Chen [1994, 1996]. They showed
that an energetically trapped global poloidal mode can exist
in a region in which the poloidal frequency is below the
toroidal frequency and in which there is a dip (minimum) in
the poloidal mode frequency with respect to L. The fre-
quency of this mode would be above the minimum in
frequency but still within the values of lowered frequency
(within the dip). Energy will gradually leak out of this
region to be absorbed at the toroidal resonance, but if the
dip is large enough that leakage will be slow [Denton and
Vetoulis, 1998].

[7] In this paper we calculate the poloidal Alfvén fre-
quency as a function of L based on the observed equilibrium
profiles for several poloidal and compressional wave events
observed by the AMPTE/IRM spacecraft. In section 2 we
describe our dataset and method, while in section 3 we
present our results. We end with discussion and a summary
in section 4. Our calculations are based on the MHD
poloidal mode frequency, which is clearly relevant only
for radially polarized waves. Observed compressional mode
frequencies may or may not be related to the poloidal
frequency. If the compressional mode is a high beta version
of the poloidal mode, the frequency of the observed wave is
expected to be similar. On the other hand, compressional
waves may be on the compressional (mirror mode) branch,
leading to entirely different dispersion (F. Cheng, private
communication, 2001).

2. Data and Method

[8] The AMPTE/IRM spacecraft, operated from August
1984 to August 1986, had an apogee of 18.8 RE, a perigee
of 552 km, an inclination of 28.7� to the equatorial plane,
and an orbital period of 44.3 hours. For the events discussed
in this paper, IRM is near the magnetic equator at magnetic
latitude MLAT ranging from �16 to �6�. IRM plasma and
magnetic field data have been obtained from the University
of New Hampshire at approximately 5 s resolution. Descrip-
tions of the plasma instrument and magnetometer are given
by Paschmann et al. [1985] and Lühr et al. [1985],
respectively. The plasma instrument is used only to obtain
the plasma pressure. It detects ions up to energy 40 keV.
When available, we add the pressure for ions with energy
>40 keV obtained from the SULEICA experiment [Möbius
et al., 1985].
[9] The electron density is obtained from the upper

hybrid noise band measured using the plasma wave instru-
ment [Häusler et al., 1985]. We normally measured the
upper hybrid frequency as the midpoint of the upper hybrid
noise band. While at least 10 s resolution is available, we
normally computed the density with 1�5 min resolution
using higher resolution when needed. Since IRM has no ion
composition information, we assumed the ion measure-
ments to be predominantly due to protons (see Paschmann
et al. [1986] and Li et al. [1995] for a discussion of the error
involved). The equilibrium quantities (magnetic field, den-
sity, and pressure) are averaged over at least 5 min.
[10] In order to compute the poloidal Alfvén mode

frequency with respect to L shell, we need the equilibrium
plasma parameters in a meridional plane (assuming azimu-
thal symmetry). Assuming that the magnetosphere is
roughly in equilibrium, we first obtain the equilibrium
parameters on a radial cut corresponding to the trajectory
of the IRM spacecraft. To get the parameters along the
equatorial plane, the density and scalar pressure are mapped
from the spacecraft position to the equator along dipole field
lines, and the magnetic field is mapped assuming that the
amplitude of the field varies as in the dipole field model. We
then use two methods to generate a two-dimensional (meri-
dional plane) equilibrium for our computations. The first is
not a true equilibrium. We calculate the magnetic flux
radially outward along the equator and then map that flux
down to the ionosphere (assumed to be perfectly conducting
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at a radius of 1.15RE) along dipole field lines, letting the
flux be constant along these lines. From the flux we can
calculate the magnetic field on each field line. We set the
pressure equal to a constant along each dipole field line, and
the density is assumed to vary like R�1.5 off the equator
along field lines [Goldstein et al., 2001]. We call this the
mapped dipole equilibrium. Note that although the shape of
the field lines is dipolar (since the flux is constant along
dipole field lines), the value of B along these field lines is
not consistent with a simple dipole field model (since the
equatorial flux is not that of a simple dipole field).
[11] The second method for generating an equilibrium

employs a two-dimensional MHD simulation in the meri-
dional plane. The parameters in the region of interest are
initially set up as described previously (for the non self-
consistent equilibrium) except that the density is chosen to
make the Courant condition constant in the entire simulation
domain (so large time steps can be used in the simulation; the
density does not affect equilibrium, and it is reset to realistic
values later). The inner L shell boundary of the simulation is
at low enough L that the plasma beta is small, and the inner
boundary can be assumed to be dipolar. The outer boundary
is also dipolar, not a realistic assumption, but the outer L is
made large enough so that the outer boundary does not
greatly influence the region of interest. For instance, for our
first event we are interested in the region 7.5 � L � 9.2 (see
Figure 2). The inner and outer L values for the simulation are
chosen to be 5.5 and 14.0, respectively. In L shells beyond
the region of interest we set the pressure to a constant (the
value at the outermost L of the region of interest, chosen if
possible where the pressure gradient is flat) and vary the
magnetic flux along the equatorial plane according to the
dipole field model (so that the outer region is initially in
equilibrium). We then run the MHD simulation, using a large
viscosity, and zeroing the plasma velocity in the entire
simulation domain every time the kinetic energy reaches a
maximum value. In this way we generate a true MHD
equilibrium, after which we reset the density to the original
values as a function of magnetic flux.
[12] The question naturally arises as to which equili-

brium, the mapped dipole or the MHD equilibrium, is the
most realistic. The MHD equilibrium is a true equilibrium;
however, the MHD simulation may smear out the gradients
in the original equilibrium parameters. In our view the most
realistic equilibrium may be something in between our two
numerical equilibrium models. The best confirmation that
our equilibrium parameters are reasonable is if the two
model equilibria agree.
[13] Once we have an equilibrium, we can solve for the

poloidal mode eigenfrequency using (equation (6) of Den-
ton [1998] or equation (12) of Vetoulis and Chen [1996])
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where kk is the component of the wave vector along the
magnetic field, and Rc is the radius of curvature. For both
the mapped dipole and MHD equilibrium models the full
model variations of B and K along field lines are included in
the calculations using equation (1).
[14] The toroidal mode (azimuthal fluctuations in the

magnetic field) eigenmode equation is given in equation
(8) of Denton and Vetoulis [1998] (see also Vetoulis and
Chen [1996]). A schematic equation for the toroidal mode
would look just like equation (2), except that Ef would be
replaced by EL (‘‘radial’’ component) and the pressure
gradient term (last term in the square bracket) would be
absent.

3. Wave Events

3.1. 4 June 1985 Event

[15] A poloidal mode event was observed on 4 June 1985,
2100–2150 UT. The location in SM coordinates was R =
8.6 RE, MLAT = �6.7�, and MLT = 18.5 hours. Thus this
event (as well as the others discussed in this paper) occurred
at dusk, where events driven by the energetic ring current
are most likely. No fluctuations in the solar wind magnetic
field were evident at this time (not shown; solar wind
plasma data were not available). Also, no corresponding
oscillations were observed in the data from the Greenland
Magnetometer Chain at MLT = 19.4, 0.9 hours east of IRM
(not shown).
[16] Figures 1a–1c show the three components of the

perturbed magnetic field DB plotted versus time for the 4
June 1985 poloidal mode event during the time that the
wave amplitude was greatest. The coordinate system is field
aligned, where the ^̂z direction is that of the equilibrium
magnetic field B, ^̂y = ^̂z � ^̂r where ^̂r is the geocentric radial
direction to the spacecraft position ( ^̂y is roughly the
azimuthal direction), and ^̂x = ŷ � ^̂z (roughly the L direction,
which we will loosely refer to as ‘‘radial’’). Note that the
perturbed magnetic field is transverse (z component small)
and that the dominant component is dBx, which indicates
that this is a poloidal mode (radial component dominant).
Figure 1d shows that the perturbed magnetic field amplitude
dB (thin curve) and the perturbed pressure dp (thick curve)
are out of phase as we would expect for a low-frequency
Alfvén wave (and contrary to expectations for the fast/
magnetosonic mode).
[17] Figures 2a–2c also show dBx, dBy, and dBz for the

same event (4 June 1985, 2100–2150 UT) but now
plotted versus L. The notation ‘‘180’’ above Figure 2a
indicates that dB and dp are 180� out of phase (Figure 1d),
and the horizontal line directly above roughly indicates the
period of wave activity as a function of L. Note that the
mode frequency is nearly constant over a rather large
range of L (8–9).
[18] Figures 2d–2g show the equilibrium parameters.

SULEICA [Möbius et al., 1985] data were available for
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this event. Although the high-energy contribution to the
total pressure is not great, this component contributes a
relatively greater amount to the pressure gradient because of
a steeper falloff with respect to L. The solid curves show the
parameters based on the measured data (mapped dipole

Figure 1. Perturbed magnetic field components (a) dBx,
(b) dBy, and (c) dBz, and (d) perturbed magnetic field
amplitude dB (thin curve) and pressure dp (thick curve), all
versus time, for the poloidal mode event observed on 4 June
1985, 2100–2150 UT.

Figure 2. (opposite) For the poloidal mode event
observed on 4 June 1985, 2100–2150 UT, the perturbed
magnetic field components (a) dBx, (b) dBy, and (c) dBz,
the equilibrium (d) magnetic field B, (e) electron density
ne, (f ) pressure p, and (g) plasma beta b, and the (h)
squared frequency f 2 for the poloidal (thin curves) and
toroidal (thick curve) mode. The filled circle is plotted at
the L value for which the poloidal mode amplitude is a
maximum and the superimposed horizontal line indicates
the range of L over which the poloidal mode is observed.
In Figures 2d–2h the solid and dashed curves are for the
mapped dipole and MHD equilibria, respectively.
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equilibrium model), while the dashed curves show the
parameters evolved in the MHD simulation. In this case the
parameters from both equilibrium models agree fairly
closely, which indicates that the equilibrium parameters
are fairly reliable. In Figure 2h we plot the squared
frequency f 2 in mHz2 for the poloidal mode (thin curves)
and toroidal mode (thick curve) of the second harmonic
(which is most likely to be unstable; see references in
section 1). The thin solid curve is based on the parameters
from the mapped dipole equilibrium model, while the
dashed curve is based on the evolved parameters from the
MHD simulation. Again, these values are fairly close.
[19] As we have already noted, the polarization and dB-dp

phase relation are consistent with the poloidal mode. Further
support for this identification is provided by the observed
wave frequency. Figure 3 shows the power spectrum of the
perturbed magnetic field components dBx (thin solid), dBy

(thick solid), and dBz (thin dashed), versus frequency f. The
dominant power is in the poloidal (dBx) component at 7 mHz.
The square of this frequency is also plotted in Figure 2h as a
filled circle. This circle is plotted at the L shell corresponding
to the largest amplitude of the wave (L = 8.6), and the
superimposed horizontal line indicates the extent of the
region over which the mode is observed (8.0 � L � 9.0).
It is clear that the theoretical poloidal mode frequencies (thin
curves) are fairly close to the observed frequency (filled
circle and horizontal solid line). Note also from Figure 2f
that @p/@L < 0 (inward pressure gradient), and from equation
(2) that the pressure gradient leads to a reduction in the
poloidal mode frequency f = w/(2p) relative to that of the
toroidal mode. This effect can be seen in Figure 2h, which
shows that the poloidal mode frequency (thin curves) is
lower than the toroidal mode frequency (thick curve).
[20] On the basis of the theory of Vetoulis and Chen

[1994, 1996] we would expect to find the poloidal mode in

a region where the poloidal frequency is less than the
toroidal frequency (which is the case) and where there is
a dip in the poloidal frequency with respect to L. There are
in fact two small dips in poloidal frequency, a smaller one at
L = 7.9–8.1 and the larger at 8.2–8.6. These dips occur
predominantly because of sharp changes in the density
profile ne rather than because of a sharp drop in pressure
as hypothesized by Vetoulis and Chen [1994, 1996]. How-
ever, the pressure gradient does play an important role; it
causes the poloidal frequency to be below the toroidal
frequency (which is also required by Vetoulis and Chen’s
theory). While the alignment is not perfect, we note that the
envelope of the magnetic field oscillations (Figure 2a)
exhibits two peaks at about L = 8.15 and 8.65, which are
very close to the dips in poloidal frequency. If there were
exact agreement with the theory, the observed frequencies
would be above the minima in the theoretical frequency;
this is not the case, but these frequencies are definitely close
to each other.

3.2. 26 July 1986 Event

[21] Three wave events occurred on 26 July 1986, during
1500–1800 UT. At 1700 UT, IRM’s location was R = 8.5
RE, MLAT = �15.6�, and MLT = 16.8 hours. SULEICA
data were also available for this time period. Figure 4
summarizes our results for these three events. The first of
these is poloidal (dBx dominant), and occurs at L = 6.8–8.0
under the notation ‘‘180?’’ at the top of the figure. This
notation indicates that dB and dp are approximately out of
phase, though the phase relation between these quantities is
not completely consistent. (As discussed earlier, we use this
phase relation to rule out the possibility that the waves are a
fast/magnetosonic mode.) The second and third wave events
have a very consistent 180� phase difference between dB
and dp. Under the left ‘‘180’’ notation, at L = 8.5–9.8, there
is a large amplitude compressional event (dBz dominant).
Oscillations with similar frequency were observed by the
EISCAT magnetometer chain (not shown) at MLT = 20
(3 hr east of IRM). Under the rightmost ‘‘180’’ notation, at
L = 9.8–10.2, there is a relatively high frequency poloidal
oscillation. An arrow in Figure 4a indicates the exact
position of this oscillation (with about 6 wave periods).
[22] The equilibrium magnetic field from the MHD

simulation (Figure 4d) is fairly close to that of the observed
parameters (mapped dipole model). There is a greater
difference in the equilibrium pressure profiles (Figure 4f ),
though the equilibrium beta values are fairly similar except
for a slight shift in L (Figure 4g). Unfortunately, the IRM
plasma wave instrument [Häusler et al., 1985] did not give
reliable data except when the spacecraft was at L = 9.2–
10.1 (L range of solid curve in Figure 4e). For both the
mapped dipole and MHD equilibrium models, we used a
ne / L�4.5 fit (plasmatrough L dependence given by
Carpenter and Anderson’s [1992] electron density model).
This fit (dashed curve in Figure 4e) describes the L range of
the observed density fairly well (Figure 4e), and may be
adequate to model the compressional and second poloidal
event. However, it is clear that our extrapolation of density
to L = 7–8 (where the first poloidal event occurs), though
reasonable, is very uncertain.
[23] In Figure 4h, the lowest three curves correspond to

the same curves plotted in Figure 2h. The thick solid curve

Figure 3. Power spectrum of the perturbed magnetic field
components dBx (thin solid), dBy (thick solid), and dBz (thin
dashed), versus frequency f for the poloidal mode event
observed on 4 June 1985, 2100–2150 UT.
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indicates the squared frequency of the second harmonic of
the toroidal mode, and the other two curves indicate the
squared frequency of the second harmonic of the poloidal
mode using the equilibrium parameters from the observa-
tions (thin solid curve) and the MHD simulation (thin dashed
curve). The curves marked ‘‘3’’ and ‘‘4’’ are for the third and
fourth harmonic poloidal mode using the observed equili-
brium parameters (mapped dipole model). One filled circle is
plotted at the position of the square of the observed fre-
quency for the two poloidal events (L = 7.3 and 10.1). For
the compressional event (L = 9.3) there are three harmonics
with significant wave power, and a filled circle is plotted at
the squared frequency corresponding to each of these. For
each of these waves events, we have plotted a horizontal line
segment indicating the rough L range of the event. (For the
compressional event, this horizontal line is drawn at the
filled circle corresponding to the highest frequency harmonic
only, that is, at the highest of the three filled circles.)
[24] If the observed parameters are used (mapped dipole

equilibrium model), the first poloidal event (leftmost filled
circle and horizontal line in Figure 4h) occurs in the region
of a very small dip in the squared poloidal frequency of the
second harmonic (lowest thin solid curve in Figure 4h).
With the equilibrium from the MHD simulation (dashed
curve), there is no longer a dip in the frequency, though the
frequency does become slightly flatter there. The theoretical
and observed frequencies agree fairly well for this event,
though we must keep in mind the significant uncertainty
related to the lack of observed density in this region.
[25] The compressional event (L = 8.5–9.8) occurs in the

region of a very large dip in the squared frequency of the
poloidal mode for both equilibrium models (lowest thin
solid and dashed curves) with the squared frequencies of all
harmonics above the lowest theoretical frequency. In this
case the theoretical squared frequency of the poloidal mode
becomes negative using the observed parameters, indicating
that the mode is ballooning unstable. (Ballooning instability
would certainly lead to large oscillations as are observed.
However, even if the plasma is not ballooning unstable but
is near to ballooning instability, resonant effects will likely
lead to a large growth rate.) As mentioned earlier, there is
some uncertainty as to whether the compressional mode
frequency is on the poloidal mode or mirror mode disper-
sion surface. If it is on the poloidal mode branch, the lowest
two frequencies are consistent with the Vetoulis and Chen
[1996] theory. The highest frequency harmonic might be

Figure 4. (opposite) Poloidal and compressional events
observed on 26 July 1986, 1500–1800 UT, with the same
format as Figure 2. The wave events occur under the
‘‘180?’’ and ‘‘180’’ markings at the top of the figure. These
waves are poloidal (dBx dominant) at L = 6.8�8.0 and L =
9.8�10.2, and compressional (dBz dominant) at L =
8.5�9.8. In Figure 4h the lowest three curves are the same
as those plotted in Figure 2h. The curves marked ‘‘3’’ and
‘‘4’’ are for the third and fourth harmonic poloidal mode
using the observed equilibrium parameters (mapped dipole
model). One filled circle is plotted at the square of the
observed frequency for the two poloidal events. For the
compressional event there are three filled circles (vertically
arranged) for the three harmonics observed.
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produced by nonlinear coupling. Alternately, the highest
frequency component might have third harmonic parallel
structure since the frequency of this harmonic matches the
frequency of the theoretical third harmonic poloidal mode
(curve marked ‘‘3 in Figure 4h). Similarly, the second
poloidal event (L = 9.8–10.2) occurs at a dip in the squared
poloidal frequency of the fourth harmonic (curve marked
‘‘4’’ in Figure 4h). It is possible that poloidal modes can
occur with these higher harmonic field aligned structures
(the harmonic number corresponds to one plus the number
of nodes along the field line), and for these, the stabilization
effect associated with the even fundamental mode [Cheng
and Lin, 1987; Chen and Hasegawa, 1988, 1991; Cheng
and Qian, 1994] does not have a strong effect (L. Chen,
private communication, 2001).

3.3. 17 May 1985 Event

[26] Figure 5 shows a poloidal wave event observed on 17
May 1985, at UT 0951–1024. At 1020 UT, IRM’s location
was R = 7.7 RE, MLAT = �5.8�, and MLT = 19.4 hours.
Solar wind (IMP-8) data were available at this time, and
there was no clear connection between these fluctuations and
those in the solar wind. This wave event consisted of three
wave packets. The first two of these (below the notation ‘‘?’’)
did not have a consistent out of phase relationship between
dB and dp. We cannot rule out the possibility that these are
traveling fast/magnetosonic waves and we will not consider
them further, except to note that they could be traveling
waves produced at the location of the third wave packet. The
third wave packet had a clear 180 degree phase relation
between dB and dp. In this case the observed frequency
matches that of the third harmonic of the poloidal mode
(curve marked ‘‘3’’ in Figure 5h). The theoretical frequency
has a slight flattening at that L value but not a dip. In this case
the SULEICA data were not available, so we may not be
measuring all the plasma pressure.

3.4. 6 June 1985 Event

[27] On 6 June 1985, at 1718–1900 UT, there was a large-
amplitude, low-frequency compressional mode similar to
that of the 26 July 1986 event. At 1818 UT, IRM’s location
was R = 9.2 RE, MLAT = �6.8�, and MLT = 18.5 hours.
Oscillations with similar frequency were observed by the
EISCAT magnetometer chain (not shown) at MLT = 22 (3.5
hours east of IRM). There were no SULEICA data available
for this event. The results of our analysis are shown in
Figure 6. Because of a change in frequency, we considered
two different periods of wave activity, that which occurred
when the spacecraft was at L = 7.9–9.2, and when it was at L
= 9.3–10.3 (see the horizontal lines in Figure 6h). In both
cases, the compressional component (dBz) was greatest
(Figure 6a–6c). As indicated by the ‘‘180’’ notation above
Figure 6a, there was a clear 180 degree phase relation
between dB and dp for both of these time periods.
[28] The equilibrium parameters for this event differ

somewhat depending on which model is used, the mapped
dipole model using the observed parameters (solid curves in
Figures 6d–6g) or the MHD simulation model (dashed

Figure 5. (opposite) Three poloidal wave packets ob-
served on 17 May 1985, UT 0951–1024. The format is the
same as that of Figure 4.
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curves in Figures 6d–6g). In particular, the equilibrium
magnetic field (Figure 6d) and pressure (Figure 6f ) are
somewhat higher in the MHD equilibrium, and the peak in
plasma beta is closer to the Earth (Figure 6g).
[29] Figure 6h compares the observed frequencies to the

theoretical ones. The top two curves (dashed and thick solid
curves) are based on the MHD simulation model whereas the
other curves are based on the mapped dipole model. The
middle curve marked ‘‘2’’, the squared poloidal frequency
based on the mapped dipole model, is significantly lower
than the dashed curve based on the MHD model, mostly
because of the difference in the equilibrium magnetic field.
In the first period of wave activity we have drawn filled
circles and horizontal lines at squared frequency values
corresponding to two harmonics. The squared frequency of
the higher harmonic is not a great distance off from the
squared frequency of the poloidal mode based on the
mapped dipole model (highest thin solid curve marked
‘‘2’’), but the squared frequency of the lowest observed
frequency (9 mHz2) is much lower than the the squared
theoretical second harmonic frequencies for both equili-
brium models, and the same holds for the squared frequency
of the observed wave in the second period of wave activity
(1.3 mHz2 at L = 9.3–10.3). The theoretical squared fre-
quency for the fundamental poloidal mode is plotted in the
two lowest curves of Figure 6h. The very lowest curve
marked ‘‘1-p’’ is computed using the poloidal dispersion
relation (1), which yields negative values indicating balloon-
ing instability. However, as discussed in section 1, a better
approximation may be to neglect the pressure term in
equation (1); this yields the curve marked ‘‘1’’ in Figure 6h.
As is clear from Figure 6h, the squared frequency of the
observed low frequency waves agrees better with the
theoretical fundamental mode squared frequencies than with
the second harmonic squared frequencies. Possibly the
fundamental mode could be excited owing to effects not
included in the standard theories [see, e.g., Mann and
Chisham, 2000]. However, there is no good agreement
between the observed waves and any theoretical curves,
including the fundamental, and as discussed earlier, this may
indicate that the compressional oscillations correspond to a
different wave branch. (Note added in proof: If the compo-
sition of the plasma is predominantly oxygen rather than
hydrogen, the theoretical frequency marked ‘‘2’’ in Figure
6h would be consistent with the lowest observed harmonics
indicated by the lowest filled circles in Figure 6h).

4. Discussion and Summary

[30] While it is not surprising that the toroidal mode
(azimuthal oscillations of the magnetic field) oscillates with
a well-defined frequency at a particular L shell (owing to the

Figure 6. (opposite) Compressional wave observed on 6
June 1985, 1718–1900 UT. The format is the same as that of
Figure 4. The two lowest frequency curves in Figure 6h
display the theoretical squared frequency for the funda-
mental poloidal mode. The curve marked ‘‘1-p’’ includes the
pressure term in the eigenmode equation and is ballooning
unstable (squared frequency <0). The curve marked ‘‘1’’ is
calculated without the pressure term. The three higher
frequency curves are the same as those in Figure 2.
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field line resonance), it is still a mystery as to how the
poloidal mode can oscillate with a relatively constant fre-
quency over a range of L shell [Takahashi et al., 1987].
Vetoulis and Chen [1994, 1996] showed that an energetically
trapped poloidal mode can exist in a region in which the
poloidal frequency is below the toroidal frequency and in
which there is a dip in the poloidal mode frequency
with respect to L. In order to test whether this mechanism
actually occurs, we have calculated the theoretical poloidal
frequency for four wave events observed by the AMPTE/
IRM spacecraft and have compared it with observed poloidal
and compressional wave frequencies. Compressional mode
frequencies may or may not be related to the poloidal mode
frequency depending on whether the compressional mode is
on the poloidal or mirror mode dispersion surface.
[31] For two of the four wave events (4 June 1985 and 26

July 1986) we have high-energy (>40 keV) particle data
(SULEICA) available, and we feel that the isotropic pres-
sure is well determined. (A more accurate description would
use anisotropic pressure ( p? 6¼ pk), but anisotropic pressure
values for AMPTE/IRM are not currently available.) For
these two events, poloidal and compressional waves do
occur in regions of a dip in poloidal frequency (Figures 2h
and 4h) in agreement with the Vetoulis and Chen [1994,
1996] theory. The observed frequencies are also in rough
agreement with the theoretical frequencies, if one allows
that some waves may have higher harmonic parallel struc-
ture (4th harmonic in the case of the third wave event
observed on 26 July 1986).
[32] For these two events the pressure is not greatly

changed if we drop the high-energy component, but there
can be some subtle differences in the L shell dependence. For
instance, in the case of the 4 June 1985 event, the inclusion
of the SULEICA data leads to a dip in square poloidal
frequency, whereas without it, the poloidal frequency is
flatter with respect to L. On the basis of this observation
we would hope that without the SULEICA data, we would at
least have a rough estimate of the theoretical frequencies.
[33] For the 17 May 1985 and 6 June 1985 wave events,

SULEICA data were not available. For one of these (17 May
1985), the observed poloidal wave has a frequency matching
the third harmonic theoretical frequency (Figure 5h). For the
other event (6 June 1985) the observed compressional
frequencies do not match any of the theoretical frequencies.
This may simply indicate that these compressional waves are
on a different dispersion surface from the poloidal Alfven
wave (though we must keep in mind that the observed
pressure values may not be totally accurate).
[34] In conclusion, the observed poloidal oscillations

appear to have frequencies which match the theoretical
poloidal mode frequency. In order to come to this conclusion,
however, some of the observed waves must be interpreted as
higher harmonics than the second harmonic. The second
harmonic is expected to be the most unstable [Cheng and Lin,
1987; Chen and Hasegawa, 1988, 1991; Cheng and Qian,
1994]. Furthermore, in the cases for which we have SULE-
ICA particle data available, the observed oscillations appear
in the vicinity of a dip in poloidal frequency. In the case of 17
May 1985 (for which we do not have SULEICA data) the
theoretical poloidal frequency has a slight flattening with
respect to L where the waves are observed. The compres-
sional waves also occur in the region of a dip in poloidal

frequency. In the case of 26 July 1986 the lowest compres-
sional frequency measured is consistent with the theoretical
poloidal frequency (it is above the minimum of the dip in the
theoretical frequency), but for 6 June 1985 it is not.
[35] Vetoulis and Chen [1994, 1996] hypothesized that a

dip in poloidal frequency would occur because of a sharp
gradient in plasma pressure. However, as pointed out by
Denton and Vetoulis [1998], the pressure profile must have
a large second derivative with respect to L in order to lead to
such a dip. (If there is a constant gradient in pressure, the
poloidal frequency will be uniformly lowered with respect
to the toroidal frequency as indicated by equation (2); the
poloidal frequency needs to rise at larger L in order that
there be a local minimum.) An example of such a pressure
profile would be a step function, where the pressure drops
precipitously from a constant value to zero. Vetoulis and
Chen used such a pressure profile for their theoretical
calculations. However, our results indicate that a dip in
poloidal frequency may occur for other reasons. In the case
of the 4 June 1985 poloidal wave event, the gradient in
pressure causes the poloidal frequency to be reduced
relative to the toroidal frequency, but it is the density profile
that causes there to be a dip in poloidal frequency. The same
is true for the 6 June 1985 compressional wave event. In the
case of the 26 July 1986 compressional wave event, it
appears that the L dependence of the magnetic field may
play a role in creating a dip in poloidal frequency.
[36] The density and magnetic field contribute to the

frequency through the dependence of the poloidal frequency
on the Alfvén speed. Neglecting the pressure term in equa-
tion (2), w � kkVA � B= L

ffiffiffiffiffi
ne

p� �
� L�4=

ffiffiffiffiffi
ne

p
in a dipole

magnetic field. Typically in the plasmatrough ne / L�4.5

[Carpenter and Anderson, 1992], so that w � L�1.75

decreases with respect to L (the frequency also typically
decreases in the plasmasphere). In order to have a dip in
poloidal frequency, the frequency must increase at some
location. Such an increase can be caused by a precipitous
drop in density, leading to an increase in VA. That is what
occurs, for instance, in Figure 2 (see Figures 2e and 2h). Such
a sudden decrease in density also typically occurs at the
plasmapause, and this could provide an explanation for
poloidal modes observed at that location.
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